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PREFACE 

Part of the Project RAND research program consists 

of basic  supporting studies  in mathematics.     In this 

Memorandum the authors provide an integration theory for 

the canonical equations of motion with parallels to the 

classical  theory of Jacobi.     The new approach is 

applicable to the general case where  there  is no 

variational principle underlying the equations  of 

motion. 
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SUMMARY 

The authors provide an integration theory for the 

canonical equations of motion with parallels to the 

classical theory of Jacobi. The new approach is 

applicable to the general case where there is no 

variational principle underIvtng the equations of 

motion. 
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INVARIANT IMBEDDING AND NONVARIATIONAL PRINCIPLES 
IN ANALYTICAL DYNAMICS 

1.     INTRODUCTION 

In several earlier papers   [1],   [2], we have pointed 

out that it is possible to associate a one-dimensional 

steady—state particle  transport process with each 

mechanical process having    N    degrees of freedom.     The 

generalized displacement vector    q(t),     0 < t < T,     is 

taken to represent the number of particles of each type 

passing a point    t    per unit of time going to the right, 

and    p(t),     the generalized momentum,  represents the 

flux to the left at    t.    Hamilton's  equations, 

(1.1) kt - H^, 

(1.2)      - p    - H    ,     0 < t < T,     i - 1,2,...,N, 1 qi -     - 

are the transport equations for this process. The 

boundary conditions 

(1.3)    p(T) - c. 

(1.4)    q(0) - w. 

correspond to incident streams from the right and left. 

Consider the quantities 
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(1.5) r(c,T,w)   - q(T), 

(1.6) T(C,T,W)   - p(0), 

the reflection and  transmission functions.    Using 

invariant imbedding,  or other techniques,   it is an easy 

matter to derive partial differential equations  for the 

functions    r    and    T     [3].    These functions can be made 

the basis for an integration theory of the system of 

equations  (1.1)  and  (1.2).    This was explained in  [2]. 

In this paper,  we extend the earlier result in 

much the same manner that Jacobi extended Hamilton's 

integration theory   [4].    The important point is  that the 

approach presented here applies  in the general case 

where  there may not be a variational principle under- 

lying equations   (1.1)  and  (1.2). 
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2. THE FORMALISM 

For simplicity, consider the system of dynamical 

equations 

(2.6) rT - F(r,c) + G(r,c)rc, 

(2.7) TT - G(r,c)Tc. 

(2.1) ^-F(u,v), 

(2.2)      -^-G(u,v),     0 <  t < T, 

along with  the boundary conditions 

(2.3) u(0)  - w,    v(T)  - c. 

In earlier notes, we showed the reflection function 

(2.4)    r(c,T,w) - u(T), 

and the transmission function 

(2.5) T(C,T,W) - v(0), 

satisfy the first-order partial differential equations 
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In addition,   they satisfy the initial conditions 

(2.8) r(c,0)  - w, 

(2.9) T(C,0)  - c. 

Then, on physical grounds,   it is clear that 

(2.10) r(v,t,w) - u, 

(2.11) T(v,t,w) - const.  » v(0). 

These represent extensions of Chandrasekhar's principles 

of invariance   [5]   to  the case of nonlinear transport 

equations.    These equations implicitly give    u    and    v 

as functions of  time and two constants. 

We may,  however,  go further,   in the manner of 

Jacobi.    Let 

(2.12) r - r(c,T,a) 

be a solution of equation (2.6) for arbitrary values of 

the constant a, and let T(c,T,a) be a solution of 

equation (2.7), which now involves a by way of r. 

Then 
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(2.13) T(v,t,a) - ß, 

(2.14) r(v,t,a) - u 

is a system of equations which implicitly define u and 

v as functions of t, a,  and ß; and u and v are 

solutions of equations (2.1) and (2.2). 

Let us verify this statement. Upon differentiation 

with respect to t, equation (2.13) yields 

(2.15)   Tc(v,t,a)v + TT(v,t,a) - 0. 

From equation (2.7), however, we know that 

(2.16)   TT(v,t,a) - G(u,v)Tc(v,t,a), 

so that 

(2.17)   v - - G(u,v), 

provided 

(2.18)   TC f 0. 

Equation (2.17) is one of the desired relations. Upon 

differentiating equation (2.14) with respect to t we 

find 



(2.19) rc(v,t,a)v + rT(v,t,a)  = u 

or 

(2.20)    - rc(v,t,at)G(u,v)  + rT(v,t,a)   = u. 

We recall equation   (2.6),  and see  that 

(2.21)        u - F(u,v) 

This completes the verification. 
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3.     AN EXAMPLE:  THE HARMONIC OSCILLATOR 

Consider  the equations 

(3.1) q - £,     q(0)   = w, 

(3.2) - p = kq,  p(T)  = c. 

The equations  for the reflection and transmission 

functions  are 

(3.3) rT  = m + krr 

and 

(3.4) TT = krrc. 

We can easily  find a one—parameter family of  solutions 

of equation   (3.3)  using  the method of separation of 

variables. 

(3.5) r(c,T,a)  - c(km)~1/2tan[ (|)1/2T + a] 

A solution of  equation   (3.4)   is 

(3.6) T(c,T,a)  - c  sec[(|)1/2T + a] 
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Consequently,   the solution of  the system of equations 

(3.1)  and  (3.2)  Is 

ß  - T(p,t,a) 

p  sec[(|)1/2t +a], 

and 

(3.7) q - r(p,t,a) 

p(kinr1/2tan[(|)1/2t + a] 

These expressions reduce to 

(3.8) p - ß  cos[(^)1/2t + a]. 

(3.9) q - ß(kmr1/2sln[(^)1/2t + a], 

a form of the solution of the equations of the harmonic 

oscillator. 
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4.    DISCUSSION 

It is evident that this approach is applicable to 

systems with    N    degrees of freedom,  rather than merely 

onii.     In addition,   the employment of other principles of 

invariance   [5],  such as 

(4.1) v(t) - r(u(t),T - t,c), 

leads to still other relations. Only minor changes in 

the formulas occur if the right—hand sides are functions 

of t,  as well as u and v. In addition, there are 

immediate applications of perturbation analysis to 

results of this nature. 
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